The crystal structure of the cephalosporin deacetylating enzyme acetyl xylan esterase bound to paraoxon explains the low sensitivity of this serine hydrolase to organophosphate inactivation.

نویسندگان

  • Silvia Montoro-García
  • Fernando Gil-Ortiz
  • Francisco García-Carmona
  • Luis Mariano Polo
  • Vicente Rubio
  • Álvaro Sánchez-Ferrer
چکیده

Organophosphorus insecticides and nerve agents irreversibly inhibit serine hydrolase superfamily enzymes. One enzyme of this superfamily, the industrially important (for β-lactam antibiotic synthesis) AXE/CAH (acetyl xylan esterase/cephalosporin acetyl hydrolase) from the biotechnologically valuable organism Bacillus pumilus, exhibits low sensitivity to the organophosphate paraoxon (diethyl-p-nitrophenyl phosphate, also called paraoxon-ethyl), reflected in a high K(i) for it (~5 mM) and in a slow formation (t(½)~1 min) of the covalent adduct of the enzyme and for DEP (E-DEP, enzyme-diethyl phosphate, i.e. enzyme-paraoxon). The crystal structure of the E-DEP complex determined at 2.7 Å resolution (1 Å=0.1 nm) reveals strain in the active Ser¹⁸¹-bound organophosphate as a likely cause for the limited paraoxon sensitivity. The strain results from active-site-size limitation imposed by bulky conserved aromatic residues that may exclude as substrates esters having acyl groups larger than acetate. Interestingly, in the doughnut-like homohexamer of the enzyme, the six active sites are confined within a central chamber formed between two 60°-staggered trimers. The exclusive access to this chamber through a hole around the three-fold axis possibly limits the size of the xylan natural substrates. The enzyme provides a rigid scaffold for catalysis, as reflected in the lack of movement associated with paraoxon adduct formation, as revealed by comparing this adduct structure with that also determined in the present study at 1.9 Å resolution for the paraoxon-free enzyme.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hyperthermostable acetyl xylan esterase

An esterase which is encoded within a Thermotoga maritima chromosomal gene cluster for xylan degradation and utilization was characterized after heterologous expression of the corresponding gene in Escherichia coli and purification of the enzyme. The enzyme, designated AxeA, shares amino acid sequence similarity and its broad substrate specificity with the acetyl xylan esterase from Bacillus pu...

متن کامل

Correlation of neuropathy target esterase activity with specific tritiated di-isopropyl phosphorofluoridate-labelled proteins.

Neuropathy target esterase (NTE) is a membrane-bound carboxylesterase activity that has been proposed as the target site for initiation of organophosphate-induced delayed neuropathy. This activity is identified by its resistance to treatment with Paraoxon and sensitivity to co-incubation with Paraoxon and Mipafox. Sucrose-density-gradient centrifugation of membrane-associated proteins isolated ...

متن کامل

Crystal structure of human plasma platelet-activating factor acetylhydrolase: structural implication to lipoprotein binding and catalysis.

Human plasma platelet-activating factor (PAF) acetylhydrolase functions by reducing PAF levels as a general anti-inflammatory scavenger and is linked to anaphylactic shock, asthma, and allergic reactions. The enzyme has also been implicated in hydrolytic activities of other pro-inflammatory agents, such as sn-2 oxidatively fragmented phospholipids. This plasma enzyme is tightly bound to low and...

متن کامل

Purification and characterization of an acetyl xylan esterase produced by Streptomyces lividans.

The acetyl xylan esterase cloned homologously from Streptomyces lividans [Shareck, Biely, Morosoli and Kluepfel (1995) Gene 153, 105-109] was purified from culture filtrate of the overproducing strain S. lividans IAF43. The secreted enzyme had a molecular mass of 34 kDa and a pI of 9.0. Under the assay conditions with chemically acetylated birchwood xylan the kinetic constants of the enzyme wer...

متن کامل

Corrigendum: Harnessing Nature’s Diversity: Discovering organophosphate bioscavenger characteristics among low molecular weight proteins

Organophosphate poisoning can occur from exposure to agricultural pesticides or chemical weapons. This exposure inhibits acetylcholinesterase resulting in increased acetylcholine levels within the synaptic cleft causing loss of muscle control, seizures, and death. Mitigating the effects of organophosphates in our bodies is critical and yet an unsolved challenge. Here, we present a computational...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Biochemical journal

دوره 436 2  شماره 

صفحات  -

تاریخ انتشار 2011